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Master Thesis
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Optimization of Small Language Models for Embedded Voice Assistance

The emergence of Large Language Models (LLMs) in recent years represents a signifi-
cant advancement in Natural Language Processing (NLP) and Artificial Intelligence (AI).
These models are revolutionizing various industries by powering intelligent assistants that
enhance the customer experience in unprecedented ways. Trained on extensive datasets,
LLMs possess the ability to comprehend context, provide human-like responses, and per-
form a variety of language-based tasks. Traditional voice command systems often strug-
gle with understanding complex queries due to use of rule based and statistical methods
lacking contextual awareness. LLMs, on the other hand, can interpret and respond to
natural language, allowing users to interact as they would with another person. This
makes the interaction more fluid and natural, improving overall user satisfaction. How-
ever, the scaling of LLMs to enhance their capabilities have led to certain limitations in
resource-constrained environments. The large number of parameters and high compu-
tational needs necessitate powerful GPUs with with significant memory and processing
capabilities. Embedded applications, in particular, often lack the computational power
of GPUs and rely solely on CPUs, which limits their ability to run large-scale models ef-
fectively. As a result, they depend on cloud or on-premise infrastructure, leading to high
costs and needing reliable network connectivity. This has led to a growing focus on Small
Language Models for embedded applications, as seen in the rising number of research pa-
pers and recent announcements from major companies like Apple, MetaAI, and Google.
Future advancements could see these models playing a central role in vehicle assistants
and human assistance robots, where understanding and predicting human needs will be
essential. The objective of this thesis is to research efficient alternatives to existing state
of the art large models for embedded applications with limited hardware. The solution
shall be able to run inference with limited compute and memory requirements while pro-
viding efficient and accurate in-vehicle assistance functionalities comparable to state of
the art models. Topics such as model finetuning, compression and accelerators will be
examined and relevant techniques implemented to achieve the optimal solution.
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Formula symbols and indices

λ − learning rate

∈ − is an element of

→ − assignment

∼ − selected from

∪ − set union

exp − exponentiation of a function

t − timestep

w − token or word

n − sequence length

P − probability distribution

LMLM − loss for masked language modeling

X − input sequence

dmodel − embedding dimension

dk − dimension of key/query vectors

Q − query matrix

K − key matrix
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W Q − projection matrix for queries

W K − projection matrix for keys

W V − projection matrix for values

W O − output projection matrix after multi-head attention

M − attention mask matrix
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1 Introduction

The emergence of Large Language Models (LLMs) in recent years marks a significant
breakthrough in the fields of Natural Language Processing (NLP) and Artificial Intel-
ligence (AI). These models are transforming industries by powering intelligent systems
capable of understanding context, generating human-like responses, and handling a wide
range of language-related tasks.

Traditional voice command systems, which rely on rule-based or statistical methods, of-
ten struggle with understanding nuanced or complex queries due to limited contextual
awareness. In contrast, LLMs enable more natural and fluid interactions, allowing users
to communicate in everyday language and enhancing the overall user experience.

Despite their capabilities, LLMs come with substantial computational and memory re-
quirements. Their performance typically depends on powerful GPUs with high parallelism
and large memory footprints. This poses a challenge for embedded applications, which
often operate with limited hardware—frequently CPU-only environments—making it diffi-
cult to run such models locally. Consequently, many systems rely on cloud-based inference,
leading to higher costs, latency, and dependence on stable network connectivity.

To address these challenges, there is growing interest in Small Language Models (SLMs)
that are optimized for deployment in resource-constrained environments. Recent efforts
by major companies such as Apple, MetaAI, and Google underscore the importance and
relevance of this direction. These compact models aim to strike a balance between per-
formance and efficiency, making them suitable for applications like in-vehicle assistants
and personal robotics, where real-time, offline language understanding is crucial.

This thesis explores the optimization of Small Language Models for embedded voice as-
sistance. The goal is to investigate efficient alternatives to current large-scale models that
can operate with limited computational and memory resources, while still delivering accu-
rate and responsive language capabilities. Topics such as fine-tuning, model compression
(including pruning and quantization), and the use of inference-time optimizations will be
explored to identify and implement an optimal solution for embedded use cases.





2 Fundamentals

2.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a subfield of computer science and artificial intel-
ligence concerned with enabling computers to understand, interpret, and generate human
language in a meaningful way. It combines techniques from linguistics, machine learn-
ing, and deep learning to perform tasks such as sentiment analysis, machine translation,
question answering, text summarization, and conversational AI.

NLP is commonly divided into two major areas:

• Natural Language Understanding (NLU): Focuses on interpreting the meaning
behind text, including tasks like intent classification, entity recognition, semantic
parsing, and sentiment analysis.

• Natural Language Generation (NLG): Focuses on producing coherent and con-
textually appropriate human-like text from structured or unstructured data, includ-
ing tasks such as summarization, report generation, and dialogue generation.

2.2 Language Models

A Language Model (LM) estimates the probability distribution over sequences of words,
enabling the generation of coherent text and the prediction of missing elements. Tradi-
tional models such as n-grams were limited by their reliance on fixed-size context windows
and sparse representations.

Modern neural language models capture complex long-range dependencies using dense
vector representations and are generally trained using one of two approaches:

• Autoregressive Modeling (e.g., GPT): Models that predict the next token given
the previous tokens. These models are typically used for generative tasks.

P (w1, w2, . . . , wn) =
n∏

t=1
P (wt|w1, . . . , wt−1) (2.1)

• Masked Language Modeling (e.g., BERT): Models that predict masked tokens
based on surrounding context, enabling bidirectional understanding. These models
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are widely used for tasks such as classification, question answering, and embedding
generation.

LMLM = −
∑

i∈masked
log P (wi|w\i) (2.2)

2.3 Voice Assistants and NLP

Voice assistants are one of the most popular applications of NLP, allowing users to inter-
act with devices via natural spoken language. Examples include Apple’s Siri, Amazon’s
Alexa, and Google’s Assistant. These systems perform tasks such as answering questions,
controlling smart home devices, managing calendars, and providing entertainment.

Earlier generations of voice assistants relied on rule-based dialogue systems and struc-
tured, pre-defined flows. Advances in NLP and machine learning have enabled the devel-
opment of more conversational, flexible, and context-aware voice assistants, increasingly
powered by large pre-trained language models.

2.4 Evolution of Voice Assistants

• Rule-Based Systems: Early systems such as ELIZA [Wei66] and ALICE [Wal03]
used pattern matching and predefined response templates. While innovative at the
time, they lacked memory, context awareness, and adaptability.

• Statistical Approaches: In the 1990s, statistical learning methods like Bag-of-
Words [Joa98] and Support Vector Machines [CV95] enabled greater flexibility and
robustness, thanks to the availability of larger datasets and improved computational
resources.

• Neural Networks and Word Embeddings: The 2000s saw the rise of neural
network models such as Recurrent Neural Networks (RNNs) [Elm90] and Long Short-
Term Memory (LSTM) networks [HS97] for sequence modeling. Word embeddings
like Word2Vec [Mik13] and GloVe [PSM14] provided dense vector representations
that captured semantic relationships between words.

• NLU and Dialogue Management: Voice assistants evolved to include modules
for intent detection, entity recognition [Lam16], and dialogue state tracking. These
allowed systems to better manage conversations and support complex, task-oriented
interactions.
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• Sequence-to-Sequence Models and Attention Mechanisms: Encoder-decoder
architectures [SVL14] and attention mechanisms [BCB15] improved the flexibility
and performance of systems on a wide range of tasks including translation and sum-
marization.

• Transformers and Pretrained Language Models: The Transformer architec-
ture [Vas17], introduced in 2017, revolutionized NLP by enabling parallelization
and efficient long-range dependency modeling. Models like BERT [Dev18] and
GPT [Rad18] were trained on massive corpora and fine-tuned for specific down-
stream tasks.

• Large Language Models (LLMs): Recent LLMs [Gra24; AAA24; YYZ24; Dee23;
Ben25] achieve state-of-the-art performance but require significant computational
resources. This has led to the parallel development of Small Language Models
(SLMs) [Wan24], optimized for resource-constrained environments.

Rule-Based
(1960s)

Statistical ML
(1990s)

Neural + Embeddings
(2000s)

Seq2Seq + Attention
(2015)

Transformers
(2017)

LLMs
(2020s)

Figure 2.1: Evolution of Voice Assistant Architectures

2.5 The Transformer Architecture

Transformers are the foundation of most modern language models. Unlike earlier archi-
tectures that relied on recurrence or convolutions, Transformers use self-attention mech-
anisms exclusively, allowing for better parallelization and modeling of long-range depen-
dencies.

Core Components

The Transformer architecture is built from several core components:

• Embedding Layer: Converts input tokens into dense vector representations, com-
bining token embeddings with positional encodings to retain sequential information:
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Figure 2.2: Transformer Architecture [Vas17]

Input Representation = Token Embedding + Positional Encoding (2.3)

• Multi-Head Attention: Allows the model to attend to different parts of the input
sequence from multiple perspectives. It operates on three fundamental representa-
tions derived from the input:

– Query (Q): Represents the request for information.

– Key (K): Represents the information available for matching.

– Value (V): Contains the content to be aggregated based on the attention
scores.

Given an input sequence X ∈ Rn×dmodel , the matrices are computed as:

Q = XW Q, K = XW K , V = XW V (2.4)
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where W Q, W K , W V ∈ Rdmodel×dk are learnable projection matrices.

The attention score between a query and a key is computed using the scaled dot
product:

Attention(Q, K, V ) = softmax
(

QK⊤
√

dk

)
V (2.5)

where the scaling factor
√

dk stabilizes gradients during training. Higher alignment
between queries and keys results in larger attention scores, thus assigning greater
weight to corresponding values during aggregation.

Multi-head attention extends this by performing multiple parallel attention opera-
tions, each with its own set of projections, and then concatenating their outputs:

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O (2.6)

where each head is defined as:

headi = Attention(QW Q
i , KW K

i , V W V
i ) (2.7)

and W O ∈ Rhdk×dmodel is a learnable matrix.

• Feedforward Network (FFN): Applies two linear transformations with a non-
linear activation (typically ReLU) in between, independently to each token:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.8)

where W1, W2 are weight matrices and b1, b2 are biases.

• Residual Connections and Layer Normalization: Applied around each sub-
layer (attention and FFN) to improve gradient flow and model convergence:

Output = LayerNorm(x + Sublayer(x)) (2.9)

• Masked Attention (in Decoders): During training, to preserve the autoregres-
sive property, a mask M is added before the softmax to prevent positions from
attending to future tokens:

MaskedAttention(Q, K, V ) = softmax
(

QK⊤
√

dk

+ M

)
V (2.10)
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where masked positions are assigned large negative values to nullify their impact.

Model Variants

• Encoder-Only Models: (e.g., BERT) — designed for understanding tasks like
classification, entity recognition.

• Decoder-Only Models: (e.g., GPT) — designed for text generation and continu-
ation.

• Encoder-Decoder Models: (e.g., T5) — ideal for sequence-to-sequence tasks like
translation and summarization.

2.6 Knowledge Enhancement techniques

There has been extensive research into enhancing the knowledge and capabilities of lan-
guage models. Some of the most impactful methods include:

• Fine-Tuning: Adapting a pre-trained model to a specific domain or task by con-
tinuing training on a smaller, specialized dataset.

• Retrieval-Augmented Generation (RAG): Combines LLMs with external knowl-
edge bases by retrieving relevant documents during inference, reducing hallucination
and increasing factual accuracy.

• Function Calling: Empowers LLMs to interact with external APIs, enabling dy-
namic capabilities such as booking services or checking live information.

2.7 Need for Small Language Models

Although LLMs deliver impressive capabilities, their computational requirements make
them unsuitable for many real-world applications, particularly on edge devices or embed-
ded systems. Furthermore, cloud-based deployments raise concerns around latency, cost,
and user privacy.

This has fueled the development of Small Language Models (SLMs), which aim to:

• Operate efficiently on CPU-based or low-memory environments.
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• Maintain competitive performance, particularly in domain-specific or specialized
tasks.

• Enable offline, private, and low-latency applications, such as on-device voice assis-
tants.

Research and industry adoption in this area is growing rapidly, with many leading orga-
nizations now publishing models with fewer than 4 billion parameters to target resource-
constrained deployments.





3 State of the Art

3.1 Large Language Models (LLMs)

Large Language Models (LLMs) such as GPT-4 [Ope23], Phi-3 [AAA24], Gemma 2
[Dee23], Llama3 [Gra24] and Qwen 2.5 [YYZ24] have significantly advanced natural lan-
guage understanding and generation. These models achieve state-of-the-art performance
through pretraining on massive datasets, leveraging architectures such as transformer-
based dense attention, mixture-of-experts, and parameter-efficient design innovations.
However, their deployment in embedded environments remains challenging due to sub-
stantial computational and memory demands, often exceeding the capabilities of edge
processors [Ali23; Ram24].

3.2 Small Language Models (SLMs)

Small Language Models (SLMs) have emerged as a solution to bridge the gap between
capability and efficiency under strict hardware constraints. Major model providers have
released compact variants, including Gemma 2 2B, Phi-3.5-mini, Qwen 2.5 3B, and Llama
3.2 1B, offering competitive performance with drastically fewer parameters.

Additionally, new SLM architectures such as SmolLM2 [Ben25], OpenELM, and MobiL-
lama showcase further advances in model scaling, optimization, and specialization for
low-latency, memory-efficient deployment. Recent surveys [Lu24; Wan24] comprehen-
sively cover the design principles underpinning these models, including width-reduced
transformers, layer dropping, and adaptive pretraining strategies.

3.3 Function Calling and Tool Use

Function-calling augments LLMs with the ability to invoke external APIs, perform ac-
tions, or retrieve information dynamically—transforming them from passive generators to
interactive agents. Recent research emphasizes several key directions for enabling robust
function calling:

• Special Token Insertion: Defining delimiters and structured outputs that make
function-call generation parseable[CL24].
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• Toolformer-style Self-supervision: Models autonomously annotate prompts with
tool-calling opportunities during training.

• Schema-driven Decoding: Output structured responses compliant with prede-
fined function call schemas or JSON formats.

• Dynamic Planning and Execution: Multi-step task decomposition where models
choose, sequence, and verify function calls dynamically [Hua24].

Survey studies such as [Qu24] highlight that tool usage integration improves task com-
plexity handling, agentic capabilities, and reliability in both small and large models.

3.4 Finetuning Strategies

Finetuning allows the adaptation of general-purpose pretrained models to specialized
domains or tasks. Major approaches include:

• Full Finetuning: Updating all parameters of the model, maximizing adaptation
but requiring significant resources.

• Parameter-Efficient Finetuning (PEFT): Techniques like LoRA [Hu21] and
QLoRA [Det23] inject lightweight trainable adapters, enabling specialization with a
small fraction of parameters updated.

• Alignment and Instruction Tuning: Methods like Supervised Fine-Tuning (SFT),
Reinforcement Learning with Human Feedback (RLHF), and Direct Preference Op-
timization (DPO) refine outputs for user alignment [Zho23].

Newer frameworks like LLM2LLM [Lee24] further automate dataset generation for spe-
cialized finetuning, reducing reliance on costly human annotation.

3.5 Model Compression Techniques

Compression is critical for embedding powerful LLM capabilities into constrained hard-
ware environments. State-of-the-art techniques include:

• Quantization: Reducing precision (e.g., INT8, INT4, mixed precision) with mini-
mal degradation in model quality [Ma24; Sax24].

• Pruning: Removing redundant neurons, heads, or even entire layers based on sen-
sitivity or importance scoring [Mur24; Sre24].
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• Knowledge Distillation: Training compact student models to mimic larger teacher
models, enabling major reductions in size while preserving capabilities [HVD15;
Lu24].

Careful combinations of these strategies are key to achieving high-accuracy, real-time
inference in low-power embedded settings.

3.6 On-device Deployment Frameworks

Deployment frameworks play a critical role in bridging model optimization with real-world
inference performance on edge devices:

• llama.cpp: Highly optimized C++ backend for CPU-based LLM inference, sup-
porting 4-bit GGUF models and quantized computation [Geo24].

• Ollama: Simple-to-use runtime for GPU-accelerated inference of quantized models,
supporting batching, streaming, and multi-threaded optimization [Oll24].

• vLLM: High-throughput, memory-efficient serving framework, particularly effective
for batch inference on server-grade GPUs[vLL24].

• ExecuTorch: Lightweight PyTorch runtime designed for mobile/embedded deploy-
ment, integrating quantization and operator fusion natively [PyT24].

• Google Edge TPU / AI Edge: Specialized hardware accelerators and SDKs
(e.g., TensorFlow Lite for Edge) to deploy quantized transformer models efficiently
on mobile and IoT devices [Goo24].

Xu et al. [Xu24] further highlight critical runtime optimizations such as caching strategies,
kernel fusion, and multi-threaded scheduling essential for efficient on-device execution.

The convergence of these frameworks with advances in model design and compression
strategies has made the deployment of capable small LLMs on mobile and embedded
platforms increasingly practical.
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3.7 Related Work

A growing body of research focuses on enabling language model deployment under strin-
gent memory, compute, and latency constraints. Key contributions include:

TinyAgent [Erd24] presents a lightweight dual-stage fine-tuning framework for function-
calling SLMs at the edge. By combining synthetic data generation and teacher-student
distillation, it achieves robust tool usage while minimizing model footprint and latency.

Octopus v2 [CL24] proposes a multi-agent modular design optimized for on-device exe-
cution. The model coordinates multiple specialized agents for tool-augmented reasoning,
leveraging a tool-augmented dataset for supervised fine-tuning.

Manduzio et al. [Man24] investigate methods to enhance small model reliability in func-
tion calling via reward-based tuning and synthetic reasoning corpora, demonstrating that
sub-2B parameter models can achieve competitive structured reasoning capabilities.

LLM in a Flash [Ali23] introduces memory optimization techniques like sliding win-
dow attention and memory paging to enable long-context inference even on low-VRAM
devices.

MobileLLM [Liu24] targets the co-design of sub-billion parameter architectures and
quantization-aware training pipelines, specifically for deployment on mobile-class CPUs
and NPUs.

Khiabani et al. [Khi25] presents domain-specific prompt engineering, instruction tun-
ing, and evaluation frameworks tailored to automotive assistant deployment, highlighting
safety and latency as critical constraints.



4 Approach

This chapter presents the overall methodology adopted for optimizing Small Language
Models (SLMs) for resource-constrained, embedded deployment. The thesis workflow
consists of dataset generation, model benchmarking, pruning and finetuning, quantization,
and on-device inference acceleration.

Synthetic Dataset Generation

SLM Benchmarking & Filtering

Structured Pruning

Parameter-Efficient Finetuning

Post-training Quantization

On-Device Inference Optimization

Figure 4.1: Thesis Workflow for Efficient Small Language Model Deployment

4.1 Tools and Frameworks

Only open-source models and tools were utilized throughout this thesis to ensure trans-
parency, reproducibility, and suitability for deployment in embedded environments. The
core frameworks and libraries included:

• Python 3.10 – Development environment.

• PyTorch – Deep learning framework for model training and optimization.
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• Hugging Face Transformers and Datasets – Access to pre-trained models and
data utilities.

• Unsloth – High-performance LoRA-based finetuning library.

• MLflow – Experiment tracking, metric logging, and model versioning.

• Azure Machine Learning Studio – Multi-GPU training and distributed experi-
ment management.

• llama.cpp – Lightweight C++ runtime for CPU-based quantized model inference.

• Ollama – GPU-accelerated inference engine for quantized models.

• LM Evaluation Harness – Standardized evaluation suite for benchmarking LLMs.

Several newer models released shortly before thesis submission could not be evaluated due
to library compatibility issues and time constraints.

4.2 Datasets and Evaluation Tasks

To simulate in-vehicle assistant behavior, a synthetic dataset with 4 tool-calling tasks
(Phone call, Navigation, Music and Vehicle control) was developed. Additionally, to eval-
uate general language understanding and reasoning, standard benchmarks were used:

• Winogrande – Commonsense reasoning through ability to dismbiguate pronouns
and other references based on context.

• HellaSwag – Commonsense reasoning through Sentence completion given a con-
text.

These benchmarks evaluation ensures both domain-specific functionality and general rea-
soning capability are assessed.

4.3 Hardware and Deployment Environment

Target Deployment Hardware

The intended final deployment target is a low-power, embedded SoC with the following
specifications:

• CPU: Quad-core ARM Cortex-A57 MPCore processor
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• GPU: NVIDIA Maxwell architecture with 128 CUDA cores

• Memory: 4 GB LPDDR4 @ 25.6 GB/s

• Storage: 16 GB eMMC 5.1

Direct testing on this platform was not feasible due to hardware unavailability. Hence
final evaluation was performed on below device to emulate closest possible hardware
specifications.

Thesis Evaluation Hardware

Experiments were conducted on the following system:

• CPU: Intel(R) Core(TM) i7-8850H (6 cores, 12 threads) @ 2.60GHz

• GPU: NVIDIA Quadro P2000 Mobile (4 GB GDDR5 VRAM)

• RAM: 62 GB DDR4

• OS: Ubuntu 22.04.4 LTS

This environment supports both CPU inference (via llama.cpp) and GPU inference (via
Ollama).

4.4 Evaluation Metrics

GPT-4o-mini was used as the performance baseline for benchmarking and evaluation.
Model performance was assessed using the following quantitative metrics:

• Tool Accuracy: Correct invocation of functions with proper parameters.

• Syntax Accuracy: Correct special token formatting in outputs.

• Latency: Average inference time per sample.

• Memory Usage: Peak RAM utilization during inference.

• Tokens per Second (Throughput): Inference speed.

• Model Size: Compressed model storage footprint.
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4.5 Limitations

The scope of this thesis was defined by the following factors:

• Only finetuning, pruning, and quantization of open-source, pre-trained models were
performed; no models were trained from scratch.

• Proof-of-concept tool-calling evaluations were conducted on a small synthetic dataset
limited to 4 tool call definitions.

• HellaSwag benchmark was restricted to a 250-sample subset due to compute and
time limitations.

• Real-time deployment with full voice assistant integration on target device was not
implemented.
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5.1 Dataset generation

A task-specific dataset was constructed to finetune and evaluate Small Language Models
(SLMs) in the context of embedded automotive voice assistants. The dataset was designed
to simulate realistic user interactions involving tool invocation and general knowledge
queries, with a focus on functional coverage, linguistic diversity, and domain relevance.

5.1.1 Dataset generation approach

To ensure prompt diversity and natural language variation, the initial queries were gener-
ated using multiple large language models, including GPT-4, GPT-4o, and GPT-4o-mini.
This multi-model prompt synthesis approach introduces stylistic and lexical variety that
better simulates real-world user input.

For response consistency, all corresponding answers were generated using GPT-4o-mini.
This model served as the ground truth oracle for both fine-tuning and evaluation pur-
poses. Responses were structured to reflect the expected output behavior of the assistant,
including direct answers, tool-calling syntax, or context-aware follow-ups.

This approach aligns with the principles proposed in LIMA: Less is More for Alignment
[Zho23], which demonstrated that high-quality instruction-following models can be trained
using relatively small but well-curated datasets. Inspired by LIMA, this thesis emphasizes
dataset quality over scale, focusing on clarity, intent expression, and actionable outputs.

Further refinement of prompts and responses was guided by concepts from LLM2LLM
[Lee24], which advocates using stronger teacher models to iteratively enhance training
data for smaller models. In this work, multiple iterations of prompt rephrasing and
response filtering were conducted to ensure that the dataset models optimal task behav-
ior—especially in the context of tool invocation and vehicle-specific functions.

5.1.2 Dataset Structure and Categories

The dataset is categorized into six primary functionality domains commonly encountered
in in-vehicle voice assistant systems:
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• General Knowledge: Fact-based queries answerable without external APIs (e.g.,
"Who wrote 1984?").

• Online API Calls: Queries requiring real-time information retrieval (e.g., "What’s
the weather in Berlin today?").

• Offline In-Vehicle Functions:

– Music Control: Commands for media playback (e.g., play, pause, skip).

– Navigation: Route planning or destination guidance.

– Vehicle Control: Adjustment of car settings like air conditioning or seat
heating.

– Phone Call Operations: Voice-controlled call initiation.

A total of 1,200 prompt-response pairs were generated across these categories.

5.1.3 System Prompts for Synthetic Data Generation

High-quality prompts were generated using structured system instructions to guide large
language models (LLMs) during dataset synthesis. The following templates were used to
ensure consistent query generation and tool-calling behavior.

Online Queries Prompt

You are a synthetic dataset generator for an in-vehicle assistant.
Generate 400 diverse and realistic user queries that require online API calls.
The queries could be regarding weather in any city, stock price info, sports results,
flight status, etc.

Guidelines:

• Include realistic natural language variations.

• Assume vehicle position in any European or US city.

• Cover diverse use cases and sentence structures.

• Avoid duplicate queries.

• Output strictly as a Python list.
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Offline Tool Queries Prompt

You are a synthetic dataset generator for an in-vehicle assistant.
Generate 400 diverse and realistic user queries that align with the capabilities of
the tools listed below:
<tools> tools </tools>

Guidelines:

• Each query must map exactly to one provided tool.

• Use realistic variations assuming a car-based assistant.

• Avoid duplicate queries.

• Output strictly as a Python dictionary with tools as keys and queries as values.

Offline Tool Response Instructions

You are an intelligent, concise in-vehicle AI voice assistant.

Task:

• Extract and validate required parameters.

• If unclear, infer the best plausible value without asking back.

• Only use provided tools.

• Strictly follow the output format below.

<tool_call>[{"name": "func_name", "arguments": {"argument1":
"value1"}}]</tool_call>

5.1.4 Example Dataset Samples

A few representative samples from the final dataset are illustrated below:
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• Phone Call:

User: "Call John Doe."
Assistant: <tool_call>[{"name": "make_call",
"arguments": {"contact": "John Doe"}}]</tool_call>

• Music Control:

User: "Play next song."
Assistant: <tool_call>[{"name": "music_control",
"arguments": {"action": "Play", "track": "Next"}}]</tool_call>

• Navigation:

User: "Navigate to Times Square."
Assistant: <tool_call>[{"name": "navigation",
"arguments": {"destination": "Times Square"}}]</tool_call>

• Vehicle Control:

User: "Turn on the headlights."
Assistant: <tool_call>[{"name": "vehicle_control",
"arguments": {"setting": "headlights", "target_state": 1}}]
</tool_call>

5.1.5 Dataset Processing and Storage

The synthetic responses were parsed into structured JSON format and subsequently saved
into CSV files for training and evaluation.

Each record included:

• prompt – The user input.

• response – The model’s tool-calling or answering output.
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The final dataset was split into three parts:

• 80% for training

• 10% for validation

• 10% for final evaluation

Only the 80%-10% (training-validation) subset was used during fine-tuning, while the
reserved 10% evaluation set was strictly held out for final model assessment.

5.1.6 Summary

The custom dataset provides a well-balanced foundation for domain-specific adaptation
of SLMs. By ensuring prompt diversity, realistic context assumptions, tool-call structure
enforcement, and high-quality supervision, the dataset enables effective fine-tuning of
models for in-vehicle embedded assistant use-cases.

5.2 SLM Benchmarking

To identify suitable Small Language Models (SLMs) for optimization and deployment in
embedded voice assistant applications, an initial set of models was selected based on recent
survey studies [Wan24; Lu24; Xu24]. These studies provided a comprehensive overview
and comparison of available SLMs, including model architecture, parameter size, tool
integration capabilities, and deployment viability.

5.2.1 Model Selection Criteria

The following criteria were considered while shortlisting the initial SLM candidates:

• Open-source availability

• Model size below 4B parameters

• Compatibility with CPU-only inference frameworks

• Native or supported tool calling capability
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5.2.2 Evaluation Methodology

To establish a benchmark, the selected models were evaluated on a custom classification
task involving three key aspects:

• Domain Understanding: Ability to distinguish between general knowledge, online
and in-vehicle functions related queries.

• Tool Calling: Ability to correctly recognise the parameters required to invoke
functions or APIs.

• Syntax Validity: Response formatting and structural correctness.

Accuracy scores were computed by comparing each model’s raw output to expected re-
sponses generated using GPT-4o-mini. The classification results are shown in Table 5.1.



5.2 SLM Benchmarking 25

5.2.3 Benchmark Results

Table 5.1: SLM Benchmarking Results Based on Accuracy across Task Dimensions
Provider Model Parameters Tool Calling Domain Tool Syntax

<1B Parameters
Hugging Face SmolLM2 360M Yes 0.36 0.00 0.00
Alibaba Qwen2.5 500M Yes 0.42 0.60 0.00

1B – 3B Parameters
Meta LLaMA-

3.2-
1B-
Instruct

1B Yes 0.33 0.90 0.00

TinyLLaMA TinyLLaMA-
1.1B-
Chat

1.1B – 0.46 0.00 0.00

Alibaba Qwen2.5 1.5B Yes 0.33 0.91 0.00
Hugging Face SmolLM2 1.7B Yes 0.58 0.83 1.00
Google Gemma2 2B – 0.70 1.00 >0

3B - 4B Parameters
Alibaba Qwen2.5 3B Yes 0.62 1.00 0.73
Meta LLaMA-

3.2-
3B-
Instruct

3B Yes 0.46 1.00 0.00

Microsoft Phi-3-
mini-
instruct

3.8B – 0.70 1.00 0.13

Microsoft Phi-
3.5-
mini-
instruct

3.8B – 0.58 1.00 0.57

5.2.4 Observations

• Models like Gemma2 (2B) and Qwen2.5 (3B) show strong tool-calling and do-
main understanding capabilities with relatively high syntax accuracy.
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• SmolLM2 (1.7B) is the smallest model with a strong balance of domain and syntax
performance, making it a promising candidate for further optimization.

• Models below 1B parameters show limited functionality, especially in syntax cor-
rectness and tool usage.

• Tool-calling support appears to correlate with improved accuracy across multiple
dimensions, indicating its importance in real-world assistant scenarios.

Based on above observations, the models SmolLM2(1.7B), Gemma2(2B), Llama3.2(3B),
Qwen2.5(3B) and Phi3.5-mini(3.8B) were selected for the finetuning stage.

5.3 Finetuning

Finetuning plays a crucial role in adapting pre-trained language models to domain-
specific tasks such as embedded automotive voice assistance. By exposing models to
task-relevant behaviors, finetuning enables more accurate, efficient, and structured re-
sponses—particularly when original pretraining lacks functional or domain-specific align-
ment.

5.3.1 Finetuning Methodology

Memory-Efficient Adaptation using QLoRA

Given the tight memory and compute budgets of embedded platforms, this thesis employs
Quantized Low-Rank Adaptation (QLoRA) for finetuning. QLoRA achieves significant
memory savings by combining 4-bit quantization with low-rank matrix updates, applied
to a frozen pre-trained model.

The weight update formulation is:

Ŵ = W + AB

where W is the frozen base weight, and A ∈ Rd×r, B ∈ Rr×k are trainable low-rank
matrices with r ≪ min(d, k). This drastically reduces the trainable parameters and
training memory footprint.
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5.3.2 Tool Invocation through Special Tokens

To facilitate explicit tool calling, special tokens were introduced into the tokenizer and
model vocabulary. These tokens map each tool (and special cases) to a unique, easily
decodable token sequence.

<audi_1> – make_call
<audi_2> – music_control
<audi_3> – navigation
<audi_4> – vehicle_control
<audi_5> – general_knowledge
<audi_6> – online
<audi_end> – function call end

The model architecture was updated via:

model.resize_token_embeddings(len(tokenizer))

to accommodate these additional tokens in the output vocabulary.

Prompt Construction

Training samples were structured using a supervised conversational format consisting
of a system message defining the assistant’s behavior, a user query, and the assistant’s
structured response. A sample finetuning prompt is shown below:
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"prompt": "<bos><start_of_turn>user
You are an intelligent, concise but helpful in-vehicle AI voice assistant designed
to help users answer their query or perform the command. You are given a user
prompt and a set of possible tools to use ONLY if required.
You have access to the following tools: [{function list}]
Follow these steps:
1. Analyze if online API call is needed → Output <audi_6>online<audi_end>
2. If internal knowledge suffices → Output <audi_5>your_answer<audi_end>
3. Otherwise, select the correct tool and output:
<audi_i>["name": "tool", "arguments": {...}]<audi_end>
Use ONLY provided tools, no made-up functions.
Example:
User: "Can you play the latest hits?"
Assistant: <audi_2>["name": "music_control", "arguments": {"action":
"Play", "track": "latest hits"}]<audi_end>

This structured formatting improves the model’s ability to precisely select and output the
correct tool invocation or provide a direct answer when appropriate.

Supervised Finetuning Objective

The finetuning process is framed as a supervised learning task, where the model is adapted
to maximize the conditional probability of task-specific outputs given corresponding in-
puts.

Given a dataset C = {(xi, yi)}N
i=1 of input-output pairs, the traditional supervised objec-

tive seeks to maximize the log-likelihood:

max
Φ

∑
(x,y)∈C

|y|∑
t=1

log PΦ(yt | x, y<t)

where Φ denotes the full set of model parameters, and PΦ(yt | x, y<t) is the probability of
generating the token yt conditioned on the input x and the previously generated tokens.

However, directly updating all parameters Φ can be computationally expensive and storage-
intensive, particularly for large pre-trained models. Therefore, this thesis adopts a parameter-
efficient finetuning approach based on Quantized Low-Rank Adaptation (QLoRA).
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In the QLoRA framework, the base model parameters Φ0 are kept frozen, and only a
small, low-rank update ∆Φ(Θ) is learned, where Θ denotes the newly introduced trainable
parameters controlling the low-rank matrices. The optimization objective thus becomes:

max
Θ

∑
(x,y)∈C

|y|∑
t=1

log PΦ0+∆Φ(Θ)(yt | x, y<t)

This formulation drastically reduces the number of trainable parameters compared to
full-model finetuning, while maintaining strong task adaptation performance.

For the models finetuned in this work, the loss function simplifies to the standard cross-
entropy loss without any auxiliary tasks:

L(C) = −
∑

(x,y)∈C

|y|∑
t=1

log P (yt | x, y<t)

where the probabilities are computed using the updated model PΦ0+∆Φ(Θ).

This supervised objective aligns with the standard training regimes used in instruction-
tuning and task specialization for small language models.

LoRA Hyperparameters and Training Configuration

Training was performed with QLoRA under the following hyperparameters:

• LoRA rank (r) = 16

• LoRA alpha = 32

• LoRA dropout = 0.1

• Training batch size = 1 per device; Gradient accumulation = 8

• Learning rate = 5 × 10−5 with linear decay

• Warmup steps = 10; Warmup ratio = 0.03

• Max steps = 150
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Only a small subset of modules were finetuned, resulting in under 40% trainable parameter
footprint compared to full-model training.

5.3.3 Azure Finetuning Environment

All finetuning runs were conducted on an Azure cloud VM with the following configura-
tion:

CPU:

• AMD EPYC 7V12, 64-core, x86_64 architecture

• 64 threads, 2 sockets, 4 NUMA nodes

• 2445 MHz clock speed

GPU:

• 4 x NVIDIA Tesla T4 (16 GB each)

• CUDA 12.2, NVIDIA Driver 535.216.03

5.3.4 Finetuning Results

Performance was assessed along three axes: Tool Accuracy, Syntax Accuracy, and Param-
eter Extraction Accuracy.
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Table 5.2: Finetuning Performance Comparison Across SLMs
Model Params Level Tool Syntax Params

SmolLM2 1.7B
Base 0.66 0.99 0.33
Finetuned 0.72 1.00 0.41
Finetuned – Special tokens 0.72 0.75 0.35

Gemma2 2B
Base 0.68 0.36 0.00
Finetuned 0.88 0.88 0.54
Finetuned – Special tokens 0.96 0.99 0.77

Phi3-mini 3B
Base 0.53 0.44 0.00
Finetuned 0.97 0.79 0.45
Finetuned – Special tokens 0.99 0.95 0.69

Llama3.2 3B
Base 0.38 0.00 0.00
Finetuned 0.98 0.24 0.19
Finetuned – Special tokens 0.96 0.51 0.38

Qwen2.5 3B
Base 0.13 1.00 0.012
Finetuned 0.88 0.94 0.62
Finetuned – Special tokens 0.96 0.99 0.65

5.3.5 Training Curves

Figure 5.1: Training Loss Curve During Finetuning
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Figure 5.2: Validation Loss Curve During Finetuning

Observations:

• Rapid loss convergence after 80 steps.

• Minimal gap between training and validation loss indicating low overfitting.

• Stable optimization even with limited training steps and memory footprint.

5.3.6 Conclusion

QLoRA combined with black-box knowledge distillation significantly improves tool iden-
tification, parameter extraction, and syntax capabilities of all models. Finetuning with
Special tokens shows even improved performance. These techniques allow models to
achieve high accuracy in structured tool-calling tasks while maintaining a lightweight
computational footprint—making them highly suitable for automotive and edge environ-
ments. Gemma2, Phi3.5-mini and Qwen2.5 moldels were selected for the next stage as
they show parameter extraction higher than 85 percent.

5.4 Model Compression

Deploying large language models in embedded systems requires aggressive model com-
pression without compromising functionality. This chapter presents two core strate-
gies—structured pruning and quantization—used to compress models efficiently for
real-time, resource-constrained deployment.
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5.4.1 Structured Pruning

Structured pruning selectively removes entire architectural components—such as atten-
tion heads, MLP neurons, embedding channels, or layers—to reduce model size and la-
tency. This strategy follows the activation-based importance scoring and joint pruning
methodology proposed in Minitron [Mur24].

A forward pass over a calibration dataset collects intermediate activations using hooks.
These activations are then used to compute component-wise importance scores.

Pruning Dimensions and Scoring

1. Attention Head Importance Let Aq, Ak, Av represent the activations from the
query, key, and value projections, reshaped by attention heads. The L2-norm across batch
and sequence dimensions is computed per head:

Scorehead = ∥Aq∥2 + ∥Ak∥2 + ∥Av∥2

Figure 5.3: Attention Head Importance Scores (left) and Layer-wise Attention Head
Importance Scores (right).

2. MLP Neuron Importance Gate projection outputs from the MLP are aggregated
and normalized:

Scoreneuron = 1
T

T∑
t=1

∥∥∥A(t)
MLP

∥∥∥
2

where T is the sequence length.
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Figure 5.4: MLP Neuron Importance Scores (left) and Layer-wise MLP Neuron Impor-
tance Scores (right).

3. Embedding Dimension Importance From the LayerNorm output, per-channel
importance is computed as:

Scoreembed = 1
T

T∑
t=1

∥∥∥A(t)
LN

∥∥∥
2

Figure 5.5: Embedding Importance Scores (left) and Layer-wise Embedding Importance
Scores (right).

4. Layer Importance (Block Importance) For layer Li, given its input Xi and
output Xi+1, the block importance (BI) is defined as:

BI(Li) = 1 − cos(θ(Xi, Xi+1))
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Figure 5.6: Layer Importance Scores

Pruning Challenges

While pruning offers significant compression benefits, several challenges exist:

• Architecture Dependency: Pruning pipelines are heavily dependent on model
architecture and cannot be easily standardized.

• Library Incompatibility: Pruned models may break compatibility with down-
stream frameworks like Hugging Face Transformers, requiring manual patching.

• Attention Mechanism Variations: Different attention architectures (MHA, MQA,
GQA) impose varying constraints, requiring specialized pruning approaches.

• Embedding Dimension Constraints: In many models, head dimension scaling is
tied to embedding dimension, limiting how much pruning is feasible along embedding
axes.

These challenges must be carefully handled when applying structured pruning in prac-
tice.

Pruning Results

The pruning outcomes for Gemma2 are summarized in Table 5.3.



36 5 Implementation

Table 5.3: Pruning Configurations and Tool Call Accuracy Before and After Finetuning
MLP MHA Embed Layers Parameters (B) Time (s) Tokens Tokens/s Tool Syntax Params Similarity (0.8)

- - - - 2.6 3.4 50 14.7
0.68 0.35 0.0 0.0
0.96 0.95 0.52 0.87

0.1
- - -

2.45 (-5%) 3.3 55 16.7
0.4 0.6 0.0 0.0

0.98 0.99 0.4 0.9

0.2
- - -

2.28 (-12%) 3.29 55 16.7
0.4 0.56 0.0 0.0

0.96 0.82 0.33 0.71

0.3
- - -

2.12 (-18%) 3.24 55 16.9
0.2 - - -

0.98 0.77 0.28 0.7

-
0.25 - -

2.52 (-3%) 0 0 0
- - - -
- - - -

-
- 0.125 -

2.29 (-12%) 2.2 36 15.0
0.38 0.67 0.0 0.0
0.98 0.99 0.38 0.86

-
- 0.25 -

1.96 (-24%) 2.0 31 15.5
0.0 - - -
0.47 1.0 0.09 0.87

-
- - 2/26

2.46 (-5%) 2.3 34 14.8
0.38 0.41 0.0 0.0
0.94 1.0 0.38 0.88

-
- - 4/26

2.3 (-11%) 2.3 36 15.6
0.43 0.47 0.0 0.0
0.96 0.78 0.33 0.6

0.1
0.125 - 2/26

2.02 (-22%) 2.2 38 17.2
0.21 0.77 0.0 0.0
0.94 0.99 0.27 0.78

Structured pruning resulted in parameter reductions up to 22–25% with minimal loss in
tool call and syntax accuracy.

5.4.2 Post-Training Quantization

Quantization compresses model weights to lower-precision formats (e.g., 8-bit, 4-bit),
enabling faster inference and reduced memory consumption. Two approaches were ex-
plored:

GPTQ Quantization

GPTQ (Grouped Post-Training Quantization) minimizes reconstruction error across grouped
weights:

min
Ŵ

G∑
g=1

∥Wg − Ŵg∥2
2

where Wg are original weights and Ŵg are quantized approximations.

Key features:
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• Dynamic quantization based on calibration data.

• Supports 4-bit and 8-bit quantization.

• Optimized for CUDA-based inference.

Implementation: GPTQ quantization was implemented using the gptqmodel library.

GGUF Quantization for llama.cpp

GGUF is a quantized binary format designed for CPU-efficient inference through llama.cpp.
It applies static quantization without calibration datasets.

Theoretical Background: Quantization maps continuous floating-point weights into
discrete levels:

ŵ = round
(

w − µ

∆

)
× ∆ + µ

where ∆ is the quantization step size and µ is the center (zero point).

Different GGUF formats like Q4_0, Q5_1, and Q8_0 trade off between compression ratio
and accuracy.

Quantization Pipeline:

1. Convert Hugging Face model to f16 GGUF datatype:

cd llama.cpp
python3 convert_hf_to_gguf.py ./input_dir/google/gemma-2-2b-it
--outfile ./quantized/google/gemma-2-2b-it_f16.gguf --outtype f16

2. Apply quantization on f16 file using llama-quantize:

./build/bin/llama-quantize ./quantize/google/gemma-2-2b-it_f16.gguf

./quantized/google/gemma-2-2b-it_q5.gguf Q5_0

Key features:

• Static quantization; no calibration needed.

• Highly efficient on CPUs and embedded devices.

• Supports diverse quantization granularities.
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5.4.3 GPTQ vs GGUF: Comparison

Table 5.4: Comparison of GPTQ vs GGUF
Aspect GPTQ GGUF (llama.cpp)
Quantization Method Dynamic (post-training, group-wise) Static
Calibration Data Required Not Required
Precision 4-bit, 8-bit Q4_0, Q5_1, Q8_0, etc.
Target Platform GPU (CUDA) CPU / Embedded
Integration PyTorch, Hugging Face llama.cpp / GGML
Optimization Goal Minimal MSE in weight reconstruction Efficient inference on low-end devices

Quantization Results

Table 5.5: GPTQ Quantization Results for Finetuned Gemma2 2B Model
Quantization Parameters (B) Memory (GB) Time (s) Tokens Tokens/s Tool Syntax Params Similarity (0.8)

Base 2.6 4.65 2.47 31 12.5 0.97 0.92 0.50 0.86
8 bit 2.6 3.03 2.15 30 14 0.98 0.97 0.53 0.86
4 bit 2.6 2.08 2.09 30 14.35 0.98 0.97 0.53 0.87

Table 5.6: Combined Pruning, Finetuning, and Quantization Results
MLP Embed Layers Params (B) Memory (GB) Time (s) Tokens Tokens/s Tool Syntax Params Similarity (0.8)

0.1 - - 2.45 (-5%)
4.57 3.3 55 16.7 0.4 0.6 0.0 0.0

- - - - 0.98 0.99 0.4 0.9
2.88 2.3 36 15.6 0.6 (eos) 1.0 0.25 0.89

- 0.125 - 2.29 (-12%)
4.26 2.4 36 15.0 0.38 0.67 0.0 0.0

- - - - 0.98 0.99 0.38 0.86
2.65 2.4 36 15.0 0.75 (eos) 0.99 0.38 0.91

- - 2/26 2.46 (-5%)
4.58 3.7 66 17.8 0.38 0.41 0.0 0.0

- - - - 0.94 1.0 0.38 0.88
2.88 - - - 0 (eos) 1.0 0.38 0.88

Table 5.7: GGUF Quantization Results using llama.cpp
Quantization Parameters (B) Memory (GB) Time (s) Tokens Tokens/s Tool Syntax Params Similarity (0.8)

Base 2.6 5.00 2.47 31 12.5 0.97 0.92 0.50 0.86
8 bit 2.6 2.59 0.93 32 34 0.94 0.95 0.49 0.83
5 bit 2.6 1.75 0.82 32 39 0.94 0.93 0.51 0.87
4 bit 2.6 1.52 0.82 33 40 0.96 0.99 0.50 0.86

5.4.4 Summary

• Structured pruning achieved up to 25% reduction in parameters while maintaining
key functional accuracies such as tool-calling and syntax adherence.
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• Post-training quantization techniques, specifically GPTQ and GGUF, offered sub-
stantial improvements in memory efficiency and inference speed.

• GPTQ provides flexible, calibration-based quantization suited for GPU inference,
while GGUF is optimized for lightweight, CPU-based, on-device deployments.

• Although a combined pruning and quantization pipeline was explored, it was con-
cluded that structured pruning is not practical for inclusion in a standard-
ized compression pipeline intended for broad applicability across open-source
models.

• Pruning remains highly model-specific, architecture-dependent, and may introduce
compatibility issues for downstream deployment frameworks such as llama.cpp or
Hugging Face Transformers.

• Therefore, for building a robust, generalized compression pipeline applicable to vari-
ous models, quantization-only approaches are preferred in the initial stages.
Pruning can be selectively considered for specific models where the performance gains
significantly outweigh the complexity and risks introduced.

5.5 Inference On-device

To deploy language models effectively in embedded systems and edge devices such as
automotive infotainment units, real-time inference performance on low-resource hardware
is critical. In this study, the inference latency and throughput of finetuned and quantized
models on a linux laptop is assessed, without inference engines, and using optimized
runtimes such as llama.cpp and ollama.

5.5.1 Experimental Setup

On-device inference was evaluated on a local Linux notebook with the following specifi-
cations:

CPU:

• Intel Core i7-8850H, 6-core, 12-thread, 4.3 GHz max

• L1/L2/L3 cache: 192 KiB / 1.5 MiB / 9 MiB

GPU:

• NVIDIA Quadro P2000 (4 GB), CUDA 12.7
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• Used for ollama GPU inference

5.5.2 Inference Acceleration Toolchains

llama.cpp

llama.cpp is a highly optimized C++ implementation for inference of transformer models
on CPUs and small devices. It achieves acceleration through:

• Quantized Kernels: Supports GGML and GGUF formats with integer quantiza-
tion (e.g., Q4_0, Q5_1).

• SIMD Vectorization: Uses AVX, AVX2, and AVX512 instructions for efficient
matrix operations even without GPU.

• Thread Affinity: Allows CPU core binding (e.g., taskset) to optimize multi-core
usage.

• Memory Mapping: Maps model weights directly to memory to avoid overheads
of loading and unpacking.

• No GPU Dependency: Enables high-throughput CPU-only inference for real-
time or offline usage.

Ollama

Ollama is a containerized runtime built for interactive LLM inference on personal ma-
chines, especially with GPUs. It integrates:

• GPU Execution: Leverages CUDA acceleration for transformer blocks using llama.cpp
backend.

• Built-in Scheduler: Automatically selects optimal quantization and device strat-
egy.

• Model Registry: Allows loading quantized models (e.g., 4-bit, 5-bit) and serving
them with minimal latency.

• Developer Friendly: CLI and API access for rapid local inference during devel-
opment.
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5.5.3 Inference Results

Baseline GPU Inference Without Acceleration

Table 5.8 shows the inference time of the finetuned model when run using GPU without
acceleration tools like TensorRT.

Table 5.8: Base Finetuned Model Inference (GPU without acceleration)
Quantization Time (s) Tokens Tokens/s
Base Finetuned 28.25 38.25 1.35

Quantized Inference Using Ollama on GPU

Table 5.9 compares quantized model inference time on GPU using the ollama runtime.

Table 5.9: Quantized Inference Using ollama (GPU)
Quantization Time (s)

8 bit 2.66
5 bit 1.63
4 bit 1.63

Quantized Inference Using Llama.cpp on CPU

Table 5.10 presents the results of model inference using llama.cpp on CPU with varying
core counts.

Table 5.10: Quantized Inference Using llama.cpp (CPU only)

Quantization
6 CPU Cores 4 CPU Cores

Time (s) Tokens Tokens/s Time (s) Tokens Tokens/s
8 bit 4.6 32.5 7.0 5.13 33.2 6.5
5 bit 3.47 33.35 9.6 4.77 33 6.9
4 bit 2.98 34.3 11.5 4.3 33 7.7

Note: CPU inference was optimized using taskset -c 0,2,4,6 to assign threads to non-
adjacent physical cores.
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5.5.4 Discussion

• On a baseline GPU without inference engines, performance is limited (1.35 tokens/s),
underscoring the importance of quantization.

• Using ollama on a local GPU significantly boosts throughput (up to 17x speedup)
with minimal accuracy degradation.

• Quantized 4-bit models on CPU achieve up to 11.5 tokens/s using 6 threads, demon-
strating feasibility for offline or low-power environments.

• 5-bit and 4-bit quantization provide a good balance of compression and runtime
performance across both GPU and CPU settings.

5.5.5 Conclusion

On-device inference performance can be significantly improved using post-training quan-
tization and efficient inference runtimes. These results validate that small language mod-
els can achieve practical speeds suitable for embedded scenarios through techniques like
GGUF quantization and CPU core affinity optimization.



6 Conclusion

6.1 Summary of Contributions

This thesis explored the optimization and deployment of Small Language Models (SLMs)
for embedded use-cases, particularly in the context of automotive voice assistants. It fo-
cused on three main strategies to enable real-time, resource-efficient inference: structured
pruning, quantization, and parameter-efficient finetuning.

Key contributions include:

• Systematic benchmarking across model configurations, analyzing the trade-offs be-
tween compression, latency, and accuracy.

• Development of a tool-oriented finetuning pipeline using QLoRA with special token
insertion and instruction-formatted data to support voice assistant behaviors.

• Implementation of component-wise structured pruning based on activation sensitiv-
ity across MLP neurons, attention heads, embedding dimensions, and transformer
layers.

• Integration of two post-training quantization pipelines—GPTQ and GGUF—with
detailed analysis on inference-time acceleration and memory reduction.

• Deployment of models using optimized runtimes like llama.cpp (CPU) and Ollama
(GPU), enabling practical on-device usage.

6.2 Key Findings

6.2.1 Finetuning

Parameter-efficient finetuning using QLoRA showed strong improvements in tool usage
accuracy and syntax correctness with minimal memory overhead. Introducing special tool
tokens and updating the model head significantly enhanced structured response genera-
tion. Finetuned Gemma2-2B with special tokens achieved 0.96 tool accuracy and 0.99
syntax accuracy while updating only a fraction of the model parameters.



44 6 Conclusion

6.2.2 Pruning

Structured pruning of MLP layers, embeddings, and transformer depth led to significant
reductions in model size and inference time. For instance, a 2.02B parameter version of
Gemma2 with pruning (MLP 0.1, Emb 0.125, Layers 2) achieved a speedup of over 30%
(17.2 tokens/s vs 12.5 tokens/s) while maintaining a high tool call accuracy of 0.78.

6.2.3 Quantization

Quantization was effective in reducing both memory usage and inference latency. Us-
ing GGUF 4-bit quantization, memory usage dropped from 5 GB to 2.1 GB with no
drop in tool usage accuracy. With llama.cpp on CPU, 4-bit quantized Gemma2 reached
11.5 tokens/s on 6 threads. On GPU, Ollama inference brought inference time down to
1.63s—over 20× faster than baseline.

6.2.4 Combined Impact

A combination of special-token finetuning, and 4-bit GGUF quantization on Gemma2-2B
achieved 0.86 accuracy at just 2.1 GB memory usage, while maintaining fast inference
speeds:

• CPU (Llama.cpp, 6 threads): 11.5 tokens/sec, 2.98s

• GPU (Ollama): 1.63s latency

• CPU (Llama.cpp, 4 threads): 7.7 tokens/sec, 4.3s

Table 6.1: Final Results for Gemma2-2B-it across Compression Techniques
Pruning Finetuning Quantization Inference Engine Params (B) Memory (GB) Accuracy Tokens/s Time (s)
- - - - 2.6 5.0 0.00 12.5 3.4
- FT - - 2.6 5.0 0.64 12.5 3.4
- ST - - 2.6 5.0 0.87 12.5 3.4
MLP 0.1, Embed 0.125, Layers 2 ST - - 2.02 3.9 0.78 17.2 2.2
Embed 0.125 ST GPTQ 8-bit - 2.29 4.4 0.68 15.0 2.4
- ST GGUF 4-bit - 2.6 2.1 0.86 14.35 0.82
- ST GGUF 4-bit Ollama 2.6 2.1 0.86 - 1.63
- ST GGUF 4-bit Llamacpp (6 cores) 2.6 2.1 0.86 11.5 2.98
- ST GGUF 4-bit Llamacpp (4 cores) 2.6 2.1 0.86 7.7 4.3
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6.2.5 General Language Understanding Benchmarks

To validate the impact of quantization on general reasoning performance, we also eval-
uated the models on two standard benchmarks: Winogrande and Hellaswag (limit
250). Results are shown in Table 6.2. Notably, 4-bit quantization introduced a small drop
(0.68 vs. 0.7) in Winogrande performance but retained competitive levels on Hellaswag.

Table 6.2: Gemma2-2B: Benchmark Accuracy on General Language Understanding
Tasks

Model Quantization Winogrande Hellaswag (limit 250)

Gemma2 2B

Base 0.70 0.54
Finetuned 0.70 0.54

8 bit 0.69 0.50
4 bit 0.68 0.50

6.3 Conclusion and Future Work

The experiments and analyses presented in this thesis confirm that with intelligent com-
pression and adaptation strategies, large language models can be effectively tailored
for low-resource embedded environments. Compression methods such as pruning and
quantization, when paired with domain-specific finetuning, enable real-time and memory-
efficient deployment of high-performing models like Gemma2.

Future directions for research and development include:

• Evaluation of latest released SLMs which boasts even better general tool calling
ability.

• Deployment and evaluation of optimizes SLMs on automotive-grade SoCs.

• Continued research on pruning strategies compatible with downstream tasks and
broader models.

• Extending deployment to speech-to-text and multimodal agents by combining ASR
and vision inputs.

This work lays the foundation for future research in building practical, intelligent, and
efficient LLM-powered agents on edge platforms.
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